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Abstract

Three different least-squares methods for processing time-series of satellite sensor data are presented. The first

method uses local polynomial functions and can be classified as an adaptive Savitzky–Golay filter. The other two

methods are more clear cut least-squares methods, where data are fit to a basis of harmonic functions and asymmetric

Gaussian functions, respectively. The methods incorporate qualitative information on cloud contamination from

ancillary datasets. The resulting smooth curves are used for extracting seasonal parameters related to the growing

seasons. The methods are implemented in a computer program, TIMESAT, and applied to NASA/NOAA Pathfinder

AVHRR Land Normalized Difference Vegetation Index data over Africa, giving spatially coherent images of seasonal

parameters such as beginnings and ends of growing seasons, seasonally integrated NDVI and seasonal amplitudes.

Based on general principles, the TIMESAT program can be used also for other types of satellite-derived time-series

data.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Time-series of Normalized Difference Vegetation

Index (NDVI) (Rouse et al., 1974; Tucker, 1979; Holben

et al., 1980), derived from e.g. NOAA/AVHRR, SPOT/

VEGETATION or TERRA/MODIS spectral measure-

ments, can be used to gain information on seasonal

vegetation development. This information aids analyzes

of the functional and structural characteristics of the

global and regional land cover (Justice et al., 1985;
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Malingreau, 1986; Townshend and Justice, 1986; Tucker

et al., 1986), and adds to our current knowledge of

global cycles of energy and matter (Running and

Nemani, 1988; Rosenqvist et al., 2000; Sellers et al.,

1997). Long time-series of NDVI data can also provide

information on shifts in the spatial distribution of bio-

climatic zones, indicating variations in large-scale

circulation patterns or land-use changes.

Although the value of remotely sensed time-series

data for monitoring vegetation seasons has been firmly

established (Malingreau, 1986; Tucker et al., 1986), only

a limited number of methods for exploring and

extracting seasonality parameters from such data series

have been developed. In this paper a FORTRAN90

program, TIMESAT, for extracting seasonal parameters

is presented. The program uses an adaptive Savitzky–

Golay filtering method and, optionally, newly developed

methods based on upper envelope weighted fits to
d.
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harmonic and asymmetric Gaussian model functions

(Jönsson and Eklundh, 2002). The program is tested

with the 8 km� 8 km pixel resolution Pathfinder

AVHRR Land (PAL) data set generated by NASA/

NOAA (Townshend, 1994; James and Kalluri, 1994).
2. Data

NDVI data (Rouse et al., 1974) are organized in

images (two-dimensional spatial arrays). Each image

gives the NDVI values, I ; in the array at a specified time

t: By extracting NDVI values at a position ðj; kÞ in the

array for consecutive times, a time-series ðti; IiÞ; i ¼
1; 2;y;N is obtained for this position (see Fig. 1). The

NDVI data in this study are 10-day maximum-value

composites (MVC). For each 10-day period the highest

NDVI is selected to represent the period (Holben, 1986).

The method reduces negatively biased noise due to

interference of clouds and atmospheric constituents.

However, negatively biased residual atmospherically

related noise, as well as some noise due to other factors,

such as surface anisotropy and sensor problems (Prince

and Goward, 1996; Gutman, 1991), will remain in the

data.

Cloudiness products are routinely generated from

different sensor data (e.g. AVHRR, VEGETATION,

MODIS). The products range from detailed measure-

ments of cloud properties to simple binary classifications

indicating presence or absence of clouds. The products

may be useful for enhancing the quality of the time-

series. PAL NDVI is accompanied by CLAVR (clouds

from AVHRR). CLAVR is a cloud indicator based on

thresholds of the AVHRR reflectance and thermal

channels (Stowe et al., 1991). The original CLAVR data

values lie between 1 and 30, and represent the three
(j,k)

(j,k)

(j,k)

(j,k)

(j,k)

1
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Fig. 1. NDVI data are organized in images. Each image gives

NDVI values for time t: By extracting NDVI values at a spatial

position ðj; kÞ for consecutive times, a time-series ðti ; IiÞ; i ¼
1; 2;y;N of NDVI data is obtained for this position.
broad groups; cloudy (1–11), mixed (12–21), and clear

(22–30). The CLAVR classification scheme is general-

ized to be globally valid, and CLAVR data have been

shown to underestimate clear pixels (Vemury et al.,

2001). Nevertheless the information may be used to

improve NDVI estimates (Gutman and Ignatov, 1996).
3. Methodology

TIMESAT implements three processing methods

based on least-squares fits to the upper envelope of the

NDVI data. The first method uses local polynomial

functions in the fitting, and the method can classified as

an adaptive Savitzky–Golay filter. The other two

methods are ordinary least-squares methods, where data

are fit to model functions of different complexity. All

three processing methods use a preliminary definition of

the seasonality (uni-modal or bi-modal) along with

approximate timings of the growing seasons.

We start by a general description of least-squares fits

to an upper envelope. This is followed by an account on

how to determine the number of annual growing seasons

and their approximate timing. The details of the three

processing methods are given, and finally the extraction

of seasonality information is described.

3.1. Least-squares fitting

Assume that we have a time-series ðti; IiÞ; i ¼
1; 2;y;N and a model function f ðtÞ of the form

f ðtÞ ¼ c1j1ðtÞ þ c2j2ðtÞ þ?þ cMjM ðtÞ; ð1Þ

where j1ðtÞ;j2ðtÞ;y;jM ðtÞ are arbitrary basis func-

tions. Then the best values, in the least-squares sense, of

the parameters c1; c2;y; cM are obtained by solving the

system of normal equations

ATAc ¼ ATb; ð2Þ

where

Aij ¼
jjðtiÞ

si

; bi ¼
Ii

si

: ð3Þ

Here si is the measurement uncertainty of the ith data

point, presumed to be known. If the measurement

uncertainties are not known they may all be set to the

constant value s ¼ 1:

3.2. On the use of ancillary cloud data for uncertainty

estimation

In TIMESAT simple cloud classifications may be used

as indicators of the uncertainty of the NDVI values. The

cloudiness classifications are translated into weights that

in turn determine the uncertainty of the NDVI values.

With CLAVR data used in our study, the three groups
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clear, mixed and cloudy are assigned weights w ¼ 1; 0.5,
and 0, respectively. These weights are then transformed

into measurement uncertainties s using the relation

s ¼
1

w þ 0:0001
: ð4Þ

There are no general rules as for how the classification

scheme or the weights should be chosen, and judicious

settings are up to the user.

3.3. Adaption to the upper envelope

To take into account that most noise, even for data

classified as clear by the cloud mask, is negatively

biased, the determination of the parameters c1; c2;y; cN

of the model function is done in two or more steps. In

the first step the parameters are obtained by solving the

system of normal equations with si obtained from the

ancillary cloud data. Data points above the model

function of the first fit are thought of as being more

important, and in the second step the system is solved

with the si of the high data points decreased by some

factor. If deemed important, the second step can be

redone to obtain some sort of self-consistency. This

multi-step procedure leads to a model function that is

adapted to the upper envelope of the data (Fig. 2).

3.4. Determination of the number of seasons

The high level of noise often makes it difficult to

determine the number of annual seasons based on data

for only one year. Including data from surrounding

years reduces the risk for erroneous determinations. In

TIMESAT, data values ðti; IiÞ; i ¼ 1; 2;y;N for three
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Fig. 2. Fitted polynomial and harmonic functions (see Section

3.6) from two-step procedure. Thin solid line represent original

NDVI data. Thick dashed line shows fitted function from first

step, whereas thick solid line displays fit from second step.
years are fit to a model function

f ðtÞ ¼ c1 þ c2t þ c3t2 þ c4 sinðotÞ þ c5 cosðotÞ

þ c6 sinð2otÞ þ c7 cosð2otÞ þ c8 sinð3otÞ

þ c9 cosð3otÞ; ð5Þ

where o ¼ 6p=N : The first three basis functions

determine the base level and the inter annual trend

whereas the three pairs of sine and cosine functions

correspond to, respectively, one, two and three annual

vegetational seasons.

The fitting procedure always gives three primary

maxima. In addition, secondary and tertiary maxima

may be found. If the amplitude of the secondary maxima

exceeds a certain fraction of the amplitude of the

primary maxima we have two annual seasons. For cases

where the amplitude of the secondary maxima is low, the

number of annual seasons is set to one. In Fig. 3(a) the

amplitude of the secondary maxima is small, and the

number of seasons is set to one. In Fig. 3(b) the

amplitude of the secondary maxima is comparatively

large, and the number of annual seasons is set to two.

3.5. Savitzky–Golay filtering

One way of smoothing data and suppressing dis-

turbances is to use a filter, and replace each data value Ii;
i ¼ 1;y;N by a linear combination of nearby values in

a window

Xn

j¼�n

cjIiþj : ð6Þ

In the simplest case, referred to as a moving average, the

weights are cj ¼ 1=ð2n þ 1Þ; and the data value Ii is

replaced by the average of the values in the window. The

moving average method preserves the area and mean

position of a seasonal peak, but alters both the width

and height. The latter properties can be preserved by

approximating the underlying data value, not by the

average in the window, but with the value obtained from

a least-squares fit to a polynomial. For each data value

Ii; we fit a quadratic polynomial (higher order poly-

nomials are not considered in this work)

f ðtÞ ¼ c1 þ c2t þ c3t2 ð7Þ

to all 2n þ 1 points in the moving window and replace

the value Ii with the value of the polynomial at position

ti: The procedure above is commonly referred to as an

Savitzky–Golay filter (Press et al., 1992). To account for

the negatively biased noise, the fitting is done in multiple

steps as described in the previous section. The result is a

smoothed curve adapted to the upper envelope of the

NDVI values.

The width, n; of the moving window determines the

degree of smoothing, but it also affects the ability to

follow a rapid change (Press et al., 1992). In TIMESAT
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two values of n can be set by the user. The first value is

used for data representing one annual season and the

second is for data representing two, where the number of

annual seasons is determined by the method outlined in

the previous section. Even if the global settings of the

moving window work fairly well, it is sometimes

necessary to locally tighten the window. A typical

situation is in semi-arid areas, where the vegetation

sometimes responds almost instantaneously to precipi-
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Fig. 3. Fits of NDVI to a basis consisting of a second order polynom

three annual vegetation seasons. Thin solid line represents original ND

of secondary maxima is small, and number of annual seasons is set t

large, and number of annual seasons is set to two.
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Fig. 4. Upper envelope Savitzky–Golay filtered data. Time is in ten-da

large for filtered data to follow sudden increase and decrease of underl

which there are large increases or decreases in surrounding intervals. S

(b). Note improved fit at rising edges and at narrow seasonal peaks.
tation. To capture the corresponding sudden rise in data

values, only a small window can be used. In the program

the Savitzky–Golay filtering is performed using the

global value n of the window. The filtered data are then

scanned. If there is a large increase or decrease in an

interval around a data point i; this data point will be

associated with a smaller window. The filtering is then

redone with the new locally adapted size of the window.

The adaptive procedure is illustrated in Fig. 4.
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3.6. Least-squares fits to a polynomial and harmonic

basis

In this least-squares method a combined polynomial

and harmonic basis

f ðtÞ ¼ c1 þ c2t þ c3t2 þ c4 sinðotÞ þ c5 cosðotÞ

þ c6 sinð2otÞ þ c7 cosð2otÞ þ c8 sinð3otÞ

þ c9 cosð3otÞ; ð8Þ

where o ¼ 6p=N; is fit to a set of data points ðti; IiÞ;
i ¼ n1;y; n2 in an interval around the central peak (cf

Menenti et al., 1993; Sellers et al., 1994). The difference

compared to the method for identifying the number of

annual seasons is that we are now fitting in a smaller

interval representing one year. The interval is between

the minima to the left and to the right of the central

peak. In order to improve the fit at the beginning and

end of this interval it has shown useful to enlarge the

fitting interval so that it comprises a little more than one

year. As in the previous cases the fitting is done in steps

to account for the negatively biased noise. In Fig. 5 a fit

to the combined polynomial and harmonic basis is

displayed along with the original data.

3.7. Least-squares fits to asymmetric Gaussian functions

In the Gaussian method (Jönsson and Eklundh, 2002)

local model functions are fit to data in intervals around

maxima and minima. The local model functions have the

general form

f ðtÞ � f ðt; c1; c2; a1;y; a5Þ ¼ c1 þ c2gðt; a1;y; a5Þ; ð9Þ
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Fig. 5. Fits of NDVI to a basis consisting of a second order

polynomial together with harmonic functions representing one,

two and three annual vegetation seasons. Thin solid line

represents original NDVI data. Thick solid line shows fitted

function. Fitting interval is between minima to left and to right

of central peak.
where

gðt; a1;y; a5Þ ¼
exp �

t � a1

a2

� �a3
� �

if t > a1;

exp �
a1 � t

a4

� �a5
� �

if toa1

8>>><
>>>:

ð10Þ

is a Gaussian type of function. The linear parameters c1
and c2 determine the basis level and the amplitude. For

the Gaussian function, a1 determines the position of the

maximum or minimum with respect to the independent

time variable t; while a2 and a3 determine the width and

flatness (kurtosis) of the right function half. Similarly, a4
and a5 determine the width and flatness of the left half.

The effects of varying the parameters a2;y; a5 are

shown in Fig. 6.

In order to ensure smooth shapes of the model

functions, consistent with what is observed for NDVI

data, the parameters a2;y; a5 are restricted in range.

For example, a3 and a5 are assumed to be larger than

two in order to avoid a cusp at the matching point t ¼ a1
of the Gaussian function.

The local model functions are well suited for

describing the shape of the scaled NDVI time-series in

overlapping intervals around maxima and minima.

Given a set of data points ðti; IiÞ; i ¼ n1;y; n2 in an

interval around a maximum or a minimum, the

parameters c1; c2 and a1;y; a5 are obtained by mini-

mizing the merit function

w2 ¼
Xn2

i¼n1

f ðti; c1; c2; a1;y; a5Þ � Ii

si

� �2
: ð11Þ

The function depends non-linearly on the parameters

a1;y; a5 and in TIMESAT the minimization is done

using a quasi-Newton method (Dennis et al., 1981a,b).

Also in this case the fitting is done in steps to account for

the negatively biased noise.

The local model functions describe NDVI data very

well in broad intervals around maxima and minima. At

the limbs, however, the fits are less good. Denoting the

local functions describing the NDVI variation in

intervals around the left minima, the central maxima

and the right minima by fLðtÞ; fCðtÞ; and fRðtÞ (see Fig. 7
(a)–(c)), the global function F ðtÞ; that correctly models

the NDVI variation in full interval ½tL; tR	; is

F ðtÞ ¼
aðtÞfLðtÞ þ ½1� aðtÞ	fCðtÞ tLototC ;

bðtÞfCðtÞ þ ½1� bðtÞ	fRðtÞ tCototR:



ð12Þ

Here aðtÞ and bðtÞ are cut-off functions that in small

intervals around ðtL þ tCÞ=2 and ðtC þ tRÞ=2; respec-

tively, smoothly drop from 1 to 0. Loosely speaking, the

global function F ðtÞ; shown in Fig. 7(d), assumes the

character of fLðtÞ; fCðtÞ and fRðtÞ in, respectively, the left,
central and right part of the interval ½tL; tR	: The merging

of local functions to a global function is a key feature of

the method. It increases the flexibility and allows the
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Fig. 6. Effect of parameter changes on local functions. In (a) parameter a2; which determines width of right function half, has been

decreased (solid line) and increased (dashed line) compared to value of left half. In (b) parameter a3; which determines flatness of right

function half, has been decreased (solid line) and increased (dashed line) compared to value of left half.
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Fig. 7. (a)–(c) Display local model functions fitted to, respectively, left minimum, central maximum, and right minimum. (d) shows

global model function that is obtained by merging three local functions.
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fitted function to follow a complex behavior of the time-

series (Jönsson and Eklundh, 2002).

3.8. Extraction of seasonal parameters

Seasonal data are extracted for each of the growing

seasons of the central year (see Fig. 8). The beginning of

a season, marked by (a) in the figure, is defined from the

filtered or fitted functions as the point in time for which

the value has increased by a certain number, currently

set to 10% of the distance between the left minimum

level and the maximum. The end of the season (b) is

defined in a similar way. The mid of a season is difficult

to define but a reasonable estimate is obtained as the

position (e) between the positions (c) and (d) for which

the value of the fitted function has increased to 90% of

distance between, respectively, the left and right mini-

mum levels and the maximum. The amplitude (f) of the

season is obtained as the difference between the peak

value and the average of the left and right minimum

values.

The annual integrated NDVI is frequently used as a

measure of net primary production (Running and

Nemani, 1988; Goward and Dye, 1987; Ruimy et al.,

1994). To give a good estimate of the production of the

seasonally dominant vegetation type it is also of interest

to compute the integrated NDVI over the growing

season, i.e. between the start and end of the season. In

TIMESAT there are two integrals over the growing

season. The first integral (h), given by the area of the

region between the fitted function and the average level
Fig. 8. Some of seasonality parameters computed in TIME-

SAT: (a) beginning of season, (b) end of season, (c) left 90%

level, (d) right 90% level, (e) peak, (f) amplitude, (g) length of

season, (h) integral over growing season giving area between

fitted function and average of left and right minimum values, (i)

integral over growing season giving area between fitted function

and zero level.
of the left and right minima, represents the seasonally

active vegetation, which may be fairly small for ever-

green areas. The second integral (i), given by the area of

the region between the fitted function and the zero level,

represents the total vegetation production. In evergreen

areas the first integral may be small even if the total

vegetation production is large.

The rate of increase in NDVI during the beginning of

the season is theoretically related to the physiognomy of

the vegetation and can be estimated by looking at the

ratio between the amplitude and the time difference

between the season start and the mid of the season.

Another interesting quantity is the asymmetry, which

can be defined as the ratio of the time differences

between the mid of the season and the start and end of

the season. A value of the asymmetry that is smaller

than one (positive skewness) indicate a rapid rise and a

slow fall. Asymmetries larger than one (negative

skewness), on the other hand, are indicative of a slow

rise and rapid fall.
4. Implementation of the methods

The methods are implemented in a general FOR-

TRAN90 computer program, TIMESAT, that processes

NDVI data for pixels in a selected geographical area. By

default the Savitzky–Golay filtering is always

performed. Fits to the combined polynomial and

harmonic basis and to the Gaussian functions are

optional. Below are some comments on the organization

of the program.

4.1. Overview of the TIMESAT program

The subroutine timesat is the main driver. After

some initializations input data controlling the calcula-

tion is read from file. The files containing NDVI and

ancillary cloud data are checked and opened. The

subroutine gensincos computes the nine sine and

cosine functions of harmonic basis on the grid ti; i ¼
1;y; n: If fits to asymmetric Gaussian functions are

requested, indicated by gauss = true, then the

subroutine gengauss computes Gaussian functions

gðti; a1; a2;y; a5Þ on the grid ti; i ¼ 1;y; n for a number

of combinations of the non-linear parameters ai:
The harmonic basis functions together with the

Gaussian functions are used repeatedly and are kept in

core. After these initial steps the loop over pixels

starts. For each pixel the time-series and corresponding

cloud data are extracted and sent to the subroutine

ts that controls the processing of single time-series.

From ts the extracted seasonal parameters are

returned. These parameters are then printed to various

output files.
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program timesat

initializations

read input data from file

allocate needed memory

open in- and output files

call gensincos

if gauss ¼ true call genfunc

loop over pixels
f
or each pixel extract the time-series
a
nd the corresponding cloud data
c
all ts
w
rite output parameters to files

end loop over pixels

end program timesat

4.2. Processing of single time-series

The next level in the program structure is to process

single time-series. In the subroutine datachecks different

checks on data are performed. Checks are done to ensure

that the pixel is not over water, single spikes in the data

are removed, or more accurately, the corresponding

weight is set to zero, checks on missing data are performed

and finally pixels over arid areas, with signal variation less

than a defined threshold, are detected and removed. After

these data checks the subroutine season is called. Here

the number of annual seasons together with approximate

positions for maxima and minima are determined

according to the prescription in Section 3.1. Depending

on the input data ts calls the subroutines that performs

the Savitzky–Golay filtering (savgol), least-squares fits to

the polynomial and harmonic basis (polharm) or least-

squares fits to local asymmetric Gaussian functions that

are subsequently merged to a global function (global-

gauss). Calls to these routines are followed by calls to

parameters that extracts seasonal parameters from the

filtered or fitted functions.
subroutine ts

call datachecks

call season

call savgol

call parameter

if harm ¼ true
c
all polharm
c
all parameters

end if

if gauss ¼ true
c
all globalgauss
c
all parameters

end if

end subroutine ts
4.3. Fits to asymmetric Gaussians and merging to global

functions
Of the subroutines in ts only globalgauss has a

structure complicated enough to motivate a more

detailed description. The routine starts by a loop over

intervals. For time-series with one annual season these

intervals are: the left minimum interval, the central

maximum interval, and the right minimum interval (see

Fig. 7). For each interval there is a call to fit that

controlls the non-linear fit of the asymmetric Gaussian.

The subroutine fit returns the locally fitted asymmetric

Gaussian functions that are merged to a global function

describing the full vegetational season.
subroutine globalgauss

loop over fitting intervals
c
all fit

end loop over fitting intervals

merge local functions to a global one

end subroutine globalgauss

When fitting the local functions we loop over

uncertainty settings to adapt to the upper envelope. After

the sigma are set the loop over parameter combinations ai

starts. For each combination a linear-least squares fit to

c1 þ c2gðt; a1; a2;y; a5Þ is performed, and the merit

function w2 is computed. The combination of ai giving

the smallest w2 is used as input values for nonlinlsq that

determines the final parameter values. After the non-linear

fits are done a number of consistency checks are made to

weed out erroneous solutions.
subroutine fit

loop over uncertainty settings to
s
et sigma
lo
op over non-linear parameters a(i)
perform liner least-squares fit to function (9)
compute chisquare value
e
nd loop over non-linear parameters
d
etermine the parameter combination a(i) that

gives
t
he smallest chisquare
c
all nonlinlsq
p
erform consistency checks

end loop over uncertainty settings

end subroutine fit

4.4. MATLAB programs to view fits

TIMESAT is accompanied by a number of MATLAB

script files that are used to view the original data
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together with the fitted functions. The files are listed in

the table below.
file
 viewed properties
data.m
 views the NDVI data together with the

weights obtained from cloud data.
Data points classified as cloudy are marked

by crosses.
Data points classified as mixed are marked

by circles.
The script allows the user to test various

parameter settings including the window size

for the Savitzky–Golay method and the

parameter that determines the degree of

adaptation to the upper envelope.
season.m
 views the fit to the polynomial and harmonic

basis that is used to determine the number of

annual seasons. Minima and maxima that

defines the positions between which the

different local Gaussian functions are fitted

(see Section 3.6) are marked by vertical lines.
savgol.m
 views the Savitzky–Golay filtered data. The

beginning and end of the season are marked

by circles. The position of the maximum is

indicated by a vertical line.
harm.m
 views the fitted polynomial and harmonic

function. The beginning and end of the

season are marked by circles. The position

of the maximum is indicated by a vertical

line.
gauss1.m
 gives three figures with the local Gaussian

functions fitted to the left minimum, the

central maximum and the right minimum.
gauss2.m
 views the global model function obtained by

merging the local ones. The beginning and

end of the season are marked by circles. The

position of the maximum is indicated by a

vertical line.
5. Input and output data

The TIMESAT program can be used in MATLAB or

image mode. In MATLAB mode the user interactively

steps through the pixels. For each pixel the program

outputs a number of ASCII files that can be processed

by the MATLAB files listed above. This is useful for

debugging purposes and for testing parameter settings

for the program. In the image mode the program
automatically loops through all pixels and outputs a

number of image files of seasonal properties. The image

files are in binary 32-bit real (single precision) raster

format, sequentially organized by row and column ðj; kÞ;
and can be viewed using IDRISI, PCI, or any equivalent

image processing software.

The input data for the program are entered inter-

actively or can alternatively be supplied in an input file

input.txt. Detailed instructions on how to enter input

data and to how prepare the input file are given in the

file instructions.pdf, that accompanies the TIME-

SAT program.
6. Test run

TIMESAT was tested on 10-day MVC AVHRR

NDVI data for Africa for the time period 1998-2000.

Fig. 9 presents results from a run in MATLAB mode.

Here the MATLAB files listed above have been used to

display original NDVI data together with fitted func-

tions for a pixel (318,300), which is located in Mali.

Fig. 10 presents results from a run in image mode. The

upper left panel displays the number of annual growing

seasons. The upper right panel shows the start of the

first growing season of 1999 obtained from the fitted

asymmetric Gaussian functions. The colors represent the

10-day period of the start, and vary from 1 (1st to 10th

of January) to 36 (21st to 31st of December). White

pixels represent missing data or areas where the data

could not be processed. Near the South Atlantic coast

the season starts around decade 5 (end of February).

The starting date then shifts toward later dates until the

border of the Sahara, where it falls at about decade 25

(beginning of October). The overall patterns appear to

be in general agreement with the climatic patterns, which

in Africa are the results of the movements of the Inter

Tropical Convergence Zone (ITCZ) (Landsberg, 1972).

The lower left panel displays the amplitude obtained

from the fitted asymmetric Gaussian functions, of the

first growing season of 1999, i.e. the difference between

the maximum function value and the basis level. The

lowest amplitudes are found in and around desert areas,

where the overall values of NDVI are very low. The

highest amplitudes are found in semi-arid areas, where

the vegetation development follows a marked annual

cycle of growth and decline coupled to the rainfall

variations. In moist areas, e.g. parts of West Africa and

areas close to the Equator, the amplitude is fairly low. In

these areas rainfall is more abundant and more evenly

distributed over the year, resulting in a weaker seasonal

variation in vegetation greenness. The lower right panel

displays the asymmetry or skewness of the first growing

season of 1999. The skewness was obtained from the

Savitzky–Golay filtered data. One notes the strong

negative skewness in a belt along the Saharan fringe.
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Fig. 9. Original NDVI data and fitted functions displayed using MATLAB m-files. (a) displays original NDVI data together with

CLAVR information. Data points classified as cloudy (weight 0) are marked by crosses. Data points classified as mixed (weight 0.5) are

marked by circles. (b) displays fit to polynomial and harmonic basis that is used to determine number of annual seasons. Minima and

maxima that defines positions between which different local Gaussian functions are fitted (see Section 3.7) are marked by vertical lines.

(c) views Savitzky–Golay filtered data. Beginning and end of season are marked by circles. Position of maximum is indicated by a

vertical line. (d) displays fitted polynomial and harmonic functions. Beginning and end of season are marked by circles. Position of

maximum is indicated by a vertical line.
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Precipitation in this area falls during a very short period

when the ITCZ is at its northernmost position (Nieu-

wolt, 1982). The shape of the NDVI curve suggests a

very rapid response to rainfall, followed by a slower

decay as the vegetation withers.
7. Discussion

7.1. On the use of the different methods

The Savitzky–Golay filtering and the fitting to

asymmetric Gaussians can be classified as local and
semi-local methods, respectively. The fitting to the

harmonic basis, on the other hand, is a global method

since it uses data for a full year. The advantage of local

and semi-local methods is that they work properly even

for time-series that are quasi-periodic. The global

method, that has a fixed period of 1 year, compare

unfavorably in these cases. For NDVI data relatively

unaffected by noise, the Savitzky–Golay filtering meth-

od works very well. Since the method is local it is able to

follow also more complex behaviors such as a rapid

increase followed by a decreasing plateau (see Fig. 11).

For noisy time-series the Savitzky–Golay filtered data

are sometimes difficult to interpret. In these cases it
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Fig. 10. Extracted seasonal parameters for Africa during 1999. (a) number of annual vegetation seasons. (b) start of first growing

season obtained from fitted asymmetric Gaussian functions. (c) amplitude of first growing season obtained from fitted asymmetric

Gaussian functions. (d) asymmetry of first growing season obtained from Savitzky–Golay filtered data.
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Fig. 11. Growing season is characterized by a narrow peak followed by a decreasing plateau. (a) filtered values from Savitzky–Golay

method. (b) function from least-squares fits to combined harmonic and polynomial basis. In this case narrow peak gives rise to

spurious oscillations. Note also that beginning of season is inaccurately determined.
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Fig. 12. Noisy time-series from a region with two annual vegetation seasons. (a) filtered values from Savitzky–Golay method. (b)

function from fits to asymmetric Gaussians.
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becomes necessary to apply restrictions, and force the

data into the fixed functional form that can be spanned

by the asymmetric Gaussians or the combined harmonic

and polynomial basis. An example of this is given in Fig.

12. Here the noise in the Savitzky–Golay filtered data

resulted in an erroneous determination of the time for

the end of the first season. The asymmetric Gaussian

method on the other hand is less sensitive to the noise

and seems to give better predictions for the beginnings

and ends of the seasons.
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