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Seasonality Extraction by Function Fitting to
Time-Series of Satellite Sensor Data

Per Jönsson and Lars Eklundh

Abstract—A new method for extracting seasonality information
from time-series of satellite sensor data is presented. The method
is based on nonlinear least squares fits of asymmetric Gaussian
model functions to the time-series. The smooth model functions
are then used for defining key seasonality parameters, such as the
number of growing seasons, the beginning and end of the seasons,
and the rates of growth and decline. The method is implemented
in a computer program TIMESAT and tested on Advanced Very
High Resolution Radiometer (AVHRR) normalized difference veg-
etation index (NDVI) data over Africa. Ancillary cloud data [clouds
from AVHRR (CLAVR)] are used as estimates of the uncertainty
levels of the data values. Being general in nature, the proposed
method can be applied also to new types of satellite-derived time-
series data.

Index Terms—Advanced Very High Resolution Radiometer
(AVHRR), clouds from AVHRR (CLAVR), data smoothing,
function fitting, normalized difference vegetation index (NDVI),
phenology, satellite sensor data, seasonality, TIMESAT, time-
series.

I. INTRODUCTION

I T IS RECOGNIZED that time-series of normalized dif-
ference vegetation index (NDVI) [1]–[3] data from the

National Oceanic and Atmospheric Administration (NOAA)
Advanced Very High Resolution Radiometer (AVHRR) spectral
measurements carry useful information about the seasonal veg-
etation development, and that this information will aid analyses
of the functional and structural characteristics of the land cover
[4]–[7]. Temporal vegetation information on a global scale is
important for strengthening our current knowledge concerning
global cycles of matter, such as moisture and carbon dioxide
[8]–[10]. Long time-series of NDVI data can also provide
information concerning shifts in the spatial distribution of bio-
climatic zones, indicating variations in large-scale circulation
patterns or land-use changes.

Although the value of time-series data for monitoring vege-
tation seasons has been firmly established [5], [7], only a lim-
ited number of methods for exploring and extracting seasonality
parameters from such data series have been developed. In this
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paper, a new and accurate method for extracting phenological
parameters is presented. The method is based on nonlinear least
squares fits of asymmetric Gaussian model functions directly to
the time-series. The method is tested with the 8 km8 km pixel
resolution composite ten-day Pathfinder AVHRR Land (PAL)
data set generated by NASA/NOAA [11], [12]. A window cov-
ering Africa was used for the study.

II. TEMPORAL NDVI V ARIATION AND

SEASONALITY EXTRACTION

The main assumption behind all methods for phenological
determination from satellite sensor data is that the signal is
related to measures of vegetation. As such, a time-series of
NDVI follows annual cycles of growth and decline. Naturally,
some land surfaces, such as deserts or lakes, do not exhibit
this behavior. Therefore, these surfaces are excluded from the
analysis. However, it can be argued that most vegetated land
surfaces, even covering evergreen areas, can be characterized
by an annual cycle. A problem occurs when the quality of
the NDVI signal is so low that the seasonal curve is not
obvious. The PAL data in this study have been geometrically
and radiometrically corrected, as well as corrected for Rayleigh
scattering and ozone absorption. Nevertheless, the signal is
affected by sensor disturbances, remnant geometric errors,
clouds, water vapor, aerosols, surface anisotropy, and cloud
shadows [13]–[17]. To reduce noise, daily data have been
transformed into maximum-value composites (MVCs) (the
term noise is used in a broad sense indicating disturbances
in the time-series signal, and no statistical distributions are
assumed). For each ten-day period, the highest NDVI is selected
to represent the period [13]. The method reduces negatively
biased noise due to interference of clouds and atmospheric
constituents. However, residual atmospherically related noise, as
well as some noise due to other factors, e.g., surface anisotropy,
will remain in the data.

The most common method to extract seasonal data from
NDVI time-series is based on thresholds, assuming that the
growing season has started when filtered or partially smoothed
NDVI values exceed a given value [18], [19]. Smoothing
involves a suppression of the short-frequency variation by
means of running averages, running medians, or compound
smoothers [20]. A somewhat different method for suppressing
noise, called thebest index slope extraction(BISE) [21]
defines an envelope by scanning a time period, ignoring low
values and selecting high values, based on thresholds. In all
threshold-based methods, the remaining noise may cause false
starts and ends of the season, making the extracted temporal
information uncertain.
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As an alternative, seasonal data can be extracted from
smooth model functions representing the data. A number of
different function types and fitting methods have been used.
Sellers et al. [22] applied Fourier smoothing by fitting the
first three harmonics through the data with a least squares
method. Data were empirically weighted to create an upper
envelope, recognizing the fact that most noise in AVHRR NDVI
time-series is negatively biased. The method was extended into
a scheme namedCloud Elimination from Composites using
Albedo and NDVI Trend(CECANT), for identifying cloud-,
snow-, and smoke-covered pixels, in [23]. Along the same
lines, the HANTS method was developed [24]. The usefulness
of these methods depends critically on the flexibility of the
model functions.

Also, classical Fourier methods have been used [25]–[31].
Based on truncated Fourier series, the number of growing
seasons, the timing of seasons, and their rate of development
have been extracted from AVHRR NDVI data [29], [30].
However, the irregular nature of the time-series, which is due
to very high noise levels in the AVHRR NDVI data [32], [33],
presents considerable difficulties.

III. M ETHODOLOGY

In the new method for extracting seasonality information
from noisy satellite sensor data, simple local nonlinear model
functions are fitted to sets of data points , ,
where is time and is NDVI. The local functions are used
to build global functions that correctly describe the NDVI
variation of full vegetational seasons. The method applies to
data sets sampled at different rates. Therefore, for example, one
can use daily data just as well as ten-day or monthly MVCs.
Also, there are no restrictions on the scaling of the NDVI. In
this work, ten-day composites are used, and in the figures time
is always in ten-day steps measured from the beginning of the
year. NDVI is expressed in scaled units according to the PAL
standard, where .

A. Local Model Function

The adopted local model functions have the general form

(1)

where

if

if
(2)

is a Gaussian-type function. The linear parametersand de-
termine the base level and the amplitude. For the Gaussian func-
tion, determines the position of the maximum or minimum
with respect to the independent time variable, while and
determine the width and flatness (kurtosis) of the right function
half. Similarly, and determine the width and flatness of the
left half. The effects of varying the parameters are
shown in Fig. 1. In order to ensure smooth shapes of the model
functions, consistent with what is observed for NDVI data, the
parameters are restricted in range. For example,

Fig. 1. Effect of parameter changes on the local functions. (a) Symmetric
Gaussian function. (b) Parametera , which determines the width of the right
function half, has been decreased (solid line) and increased (dashed line)
compared to the value in (a). (c) Parametera , which determines the flatness
of the right function half, has been decreased (solid line) and increased (dashed
line) compared to the value in (a).

and are assumed to be larger than 2 in order to avoid a cusp
at the matching point of the Gaussian function.

B. Determination of the Parameters

The local model functions are well suited for describing the
shape of the scaled NDVI time-series in overlapping intervals
around maxima and minima. If we select a set of data points

, in an interval around a maximum or a
minimum, the parameters, , and are obtained by
minimizing the merit function

(3)
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where is the measurement uncertainty of theth data point,
presumed to be known. If the measurement uncertainties are not
known, they may all be set to the constant value . To esti-
mate the uncertainty of the NDVI data points, the PAL cloud flag
channel CLAVR was used in this study. CLAVR is formed by an
algorithm that uses reflected and thermal AVHRR wavelength
bands to classify pixels into clear, mixed, and cloudy categories
[34], [35].

C. Adopting to the Upper Envelope

To take into account the fact that most noise, even for data
classified as clear by CLAVR, is negatively biased, the determi-
nation of the parameters of the model function is done in two
steps. In the first step, the parameters are obtained by mini-
mizing the merit function with as obtained from the ancil-
lary data. Data points below the model function of the first fit
are thought of as being less important, and in the second step
the minimization is redone with the of the low data points
increased by a factor of two. This two-step procedure leads to
a model function that is adopted to the upper envelope of the
NDVI data (see Fig. 2).

D. Global Model Function

The local model functions describe NDVI data very well in
broad intervals around maxima and minima. At the limbs, how-
ever, the fits are less good. If we denote the local functions de-
scribing the NDVI variation in intervals around the left minima,
the central maxima, and the right minima by , , and

[see Fig. 3(a)–(c)], the global function that correctly
models the NDVI variation in full interval is

Here, and are cutoff functions that in small intervals
around and , respectively, smoothly
drop from 1 to 0. Loosely speaking, the global function ,
shown in Fig. 3(d), assumes the character of , , and

in, respectively, the left, central, and right part of the in-
terval . The merging of local functions to a global func-
tion is a key feature of the method. It increases the flexibility
and allows the fitted function to follow a complex behavior of
the time-series. An example of this is given in Fig. 4, where
data are characterized by a distinct peak followed by a plateau.
This behavior cannot be represented by a single Gaussian or by
a low-order Fourier method.

IV. I MPLEMENTATION OF THE METHOD

The method is implemented by the user in a general computer
program TIMESAT that processes NDVI data for pixels in a
selected geographical area. Below are some comments on the
different parts of the program.

A. Determination of

The data points of the CLAVR time-series are categorized as
clear, mixed, and cloudy. The measurement uncertaintiesof
the corresponding NDVI values are then set to 1, 2, and 100,
respectively. These values are provisional and can be changed.

Fig. 2. Fitted functions around a maximum from the two-step procedure. The
dashed line shows the fitted function from the first step, and the solid line the
fit from the second step. The original NDVI time-series is shown by the noisy
fine continuous line.

B. Running Window Averaging

Several of the algorithms in TIMESAT, especially the ones
used to find a consistent set of maxima and minima, rely
on smoothed NDVI values , . Currently,
the smoothing is done using a running window-averaging
procedure

(4)

where and are the number of points used to the left and
right of the data point. For the data set used in this study, the
window parameters and were set to three. Taking the
ancillary CLAVR data into account, the weights of the averaging
are set to .

C. Performing Quality Checks on Time-Series

In order to process the time-series, some basic quality criteria
must be fulfilled. First, checks are done on missing data. Time-
series with too many missing data points, or where the number
of contiguous missing values exceeds a threshold value, are dis-
carded. Second, extreme spikes of single high or low values
(usually related to sensor disturbances) are removed. Third, tests
are performed to detect a low overall signal variation, which
is typical for desert areas. Time-series for which the difference
between the maximum and minimum values of the smoothed
NDVI divided by the mean value falls below a threshold value
are discarded. Fourth, the program looks for time-series with a
high degree of noise. Currently, time-series are removed when
the ratio of the sum of squared distances between the original
and smoothed NDVI data values to the mean value exceed a se-
lected threshold. Such noise may be found in some humid trop-
ical areas.

The four checks are done to ensure that only pixels with
a clearly recognizable seasonal curve are passed on to the
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Fig. 3. Scaled NDVI covering a time period of three years for a selected location in Africa. Time is expressed in ten-day steps. Year 1 goes between 1 and 36,
year 2 between 36 and 72, and year 3 between 72 and 108. (a)–(c) Local model functions fitted to the left minimum, the central maximum, and the right minimum.
(d) Global model functionF (t) that is obtained by merging the three local functions. The global function assumes the character of the three local functionsf (t),
f (t), andf (t) in, respectively, the left, central, and right part of the interval[t ; t ].

Fig. 4. Global function fitted to a time-series with a distinct peak followed by
a decaying plateau.

curve-fitting subroutines. The criteria can be relaxed, and the
extreme is to process all data, except for the very small fraction,
less than one pixel out of a thousand, for which the nonlinear
fit fails. The relaxation might force the program to fit functions
to time-series where no actual seasonal curve is present and
where the obtained result is of limited interest.

D. Selecting Consistent Sets of Maxima and Minima

Based on smoothed data from the running window-averaging
procedure, a consistent set of maxima and minima, to which
the local functions are fitted, is identified. Checks done ensure
that the differences in time and intensity between maxima and
minima are reasonable. Of course, finding maxima and minima
becomes more subjective for noisy data or for data from areas
where there is no clear seasonality.

E. Fitting Local Model Functions

To ensure that the limbs of the seasons are correctly modeled,
three years of data are used. The functions are fitted to the sea-
sons of the central year, but the seasons may spill over to the
adjacent years.

The parameters of the local model functions are determined
by minimizing the merit function . To find the minimum of
the merit function, a grid search [36] is done over the region of
allowed values of the nonlinear parameters . For each
combination of the nonlinear parameters, the linear parameters

and are obtained by solving the normal equations of the
linear least squares problem [36]. The parameter combination
giving the smallest value of the merit function is then used as
the starting value for the full Newton-type minimization code
NL2SOL [37], [38], which is used to provide the final solution.
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Fig. 5. Global functions fitted to NDVI data with (a) one and (b) two annual
growing seasons. The beginnings and ends of the seasons are marked by circles.

F. Extracting Phenological Data

Phenological data are extracted for each of the growing sea-
sons of the central year. The beginning of a season is defined
from the global model function as the point in time for which
the value has increased by a certain value, currently set to 10%
of the distance between the base level and the maximum, above
the base level. The end of the season is defined in a similar way.

The rate of increase in NDVI during the beginning of the
season is theoretically related to the physiognomy of the veg-
etation and can be estimated by the first derivative between the
minimum and the maximum NDVI values. The rate of decrease
after the maximum NDVI also holds phenologically relevant in-
formation and can be estimated in a similar way. In TIMESAT,
the derivatives are determined at points midway between the
base level and the maximum value.

The annual integrated NDVI is frequently used as a measure
of net primary production [8], [39], [40]. To give a good esti-
mate of the production of the phenologically dominant vege-
tation type, the time of integration is restricted to the growing
seasons.

Among the other phenological parameters extracted are the
amplitude of the signal, the maximum signal value and its date,
and the length of the growing season.

V. RESULTS

TIMESAT was tested on ten-day MVC AVHRR NDVI data
for Africa for the time period 1982 to 2000. Fig. 5 shows time-

Fig. 6. Comparisons with other methods. Global model functions are
displayed along with curves from BISE with a sliding window of four ten-day
periods and with functions obtained from upper envelope weighted least
squares fits to three Fourier components. The beginnings and ends of the
seasons, as obtained by the Gaussian functions, are marked by circles. The
plots are zoomed in on the central year. In (a), the small peak around decade
45 may give a false season start for BISE combined with threshold criteria. In
(b), the narrow peak gives rise to spurious oscillations for the Fourier method.
In (c), BISE fails to give an accurate value of the season start.

series with, respectively, one and two annual growing seasons
for which the program successfully fitted global functions. From
the model functions, the beginning and end of the seasons were
extracted. It can be seen that the two fitted global functions
of the time-series in Fig. 5(b) are dissimilar, and that the left
function is clearly asymmetric. These properties can be useful
as an aid in the determination of the functional type of vege-
tation. Clearly, an asymmetric signal can also be an indicator
of fire or human management, including agricultural practices
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Fig. 7. Start of the first growing season of 1991, estimated from the fitted functions. Time is in decades going from 1 (January 1–10) to 36 (December 21–31).
The small graph shows the variation in date over the marked transect across the Sahel.

such as harvest. In Fig. 6(a)–(c), fitted global functions are dis-
played together with functions from an upper envelope weighted
least squares fit to three Fourier components and with smoothed
curves using BISE. From the figure, it is clear that the asym-
metric Gaussian functions are more flexible than are the sinus
and cosinus basis of the Fourier methods, and that the global
model function of the present method does very well in de-
termining the start and end of the seasons in all three cases.
It should also be noted the global model function built from
Gaussians is able to follow the narrow peak of the time-series
in Fig. 6(b) without the spurious oscillations that are connected
with Fourier series. Turning to BISE, it is seen that this method
combined with some threshold criteria is doing very well in de-
termining the start and end of the time-series in Fig. 6(b). The
remaining noise in Fig. 6(a) and (c), however, presents major
difficulties. In these time-series, determination of the start, max-
imum, and end of the seasons would be inaccurate with BISE.

The real usefulness of the new method depends on the ability
to generate spatially coherent images of phenological parame-
ters. Two examples of this ability are given in Figs. 7 and 8.
Fig. 7 was generated from beginnings of the first growing season
of 1991. The colors represent the ten-day period of the start, and
they vary from 1 (January 1–10) to 36 (December 21–31). Black
pixels represent missing data or areas where no clear seasonal
signal was found. A profile has been drawn from the South At-
lantic through the Sahel to the Sahara. The line chart in Fig. 7

gives the pixel values for this profile. Near the coast the season
starts around decade 5 (end of February). The starting date then
shifts toward later dates until the border of the Sahara, where
it falls at about decade 25 (beginning of October). The overall
patterns in Fig. 7 appear to be in general agreement with the
climatic patterns, which in Africa are dominated by the move-
ments of the intertropical convergence zone (ITCZ) [41].

Fig. 8 displays the amplitude of the first growing season of
1991. The lowest amplitudes are found in and around desert
areas, where the overall values of NDVI are very low. The
highest amplitudes are found in semi-arid areas, where the
vegetation development follows a marked annual cycle of
growth and decline coupled to the rainfall variations. In moist
areas, e.g., parts of West Africa and areas close to the equator,
the amplitude is fairly low. In these areas, rainfall is more
abundant and more evenly distributed over the year, resulting
in a weaker seasonal variation in vegetation greenness.

VI. SUMMARY AND DISCUSSION

A method to fit asymmetric Gaussian functions to time-se-
ries of satellite sensor data is presented. The fitted functions are
used to portray the seasonal growth and decline curves of the
land vegetation, and to estimate phenological parameters. With
a method to map phenological variables over very large areas,
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Fig. 8. Amplitude of the scaled NDVI values of the first growing season of 1991. The amplitude was computed as the difference between the maximum value of
the fitted function and the average of the left- and right-hand side minimum values.

the possibilities of correctly determining land cover and vege-
tation types, and estimating biophysical parameters on regional
and global levels, increase. This will aid the provision of useful
remotely sensed input data to global and regional biogeochem-
ical models.

The function fitting is improved by bringing in ancillary
data in the form of CLAVR fields. These data provide a
qualitative indicator of the cloud status of each data point in
the time-series, and they can be translated to an uncertainty
estimate of the NDVI value. CLAVR is a provisional data
set that has been shown to underestimate the number of clear
pixels [42]. Other cloud classifications, such as CLAVR-3 [42],
or regionally adapted schemes could also be used. The new
method was developed to extract phenological parameters, but
it can also be used to reconstruct a smooth time-series. To this
end, it compares favorably with BISE and methods based on
Fourier series.

A difficulty in the method, as implemented in the program
TIMESAT, is to make an unambiguous identification of the true
maxima and minima in the time-series, i.e., to discriminate be-
tween the maxima and minima that come from the underlying
seasonal variation and the maxima and minima that may result
from noise or disturbances. This is currently solved by making a
search of the moving average filtered data. In [25], the maxima
and minima were identified from the first three Fourier com-
ponents. The method was generally successful, except where

the noise level was high or where the growing season was very
short. In light of these results, one possible way to improve the
method for identifying true maxima and minima would be to fit
Fourier series to several years of NDVI data, determining the av-
erage number of seasons. This information could then aid the al-
gorithms of TIMESAT. Work is currently underway along these
lines.

NDVI was used in this study, but other vegetation indices
that follow the seasonal variation of land vegetation can also
be processed. Currently, the only data assumption is that most
of the noise in the data has a negative bias. If this assumption is
not met, the weighting procedure in the iteration step should be
altered.

It can be argued that it is necessary to make a full correc-
tion for atmospheric and BRDF effects before extracting phe-
nological information. If ancillary data for correcting for these
effects exist, the improved signal quality will generate more cor-
rect phenological parameters and improve the Gaussian function
fits. When processing long time-series, trends due to solar zenith
angle variations, atmospheric aerosols from volcanic eruptions,
or other slowly varying systematic errors will affect seasonal in-
tegrals and maximum values that are additive quantities. Other
metrics, such as the dates of the seasons, however, will remain
stable.

New long-term databases with improved spatial and spectral
characteristics will be constructed as data from new and planned
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systems, such as Terra MODIS, SPOT Vegetation, and Envisat
MERIS, are compiled. TIMESAT was developed to work with
such data sets without major alterations.

Although outside the scope of this paper, a necessary research
topic will be to validate the seasonality metrics and to esti-
mate their significance by comparing with vegetation and cli-
mate data. Validation is, however, very difficult to carry out due
to the large pixel size of the data. It also remains to be tested
if the form of the model functions is well adapted to describe
time-series of other biomes than the currently tested ones, e.g.,
Northern Boreal forests.
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